Global energy budget update
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* Review of some basics R rMENT OF C°

* The energy budget and some constraints from CERES data
* Limited insights into climate sensitivity
* Confounding internal variability?

* An aside on regional contributions to the energy budget



Global energy balance

The climate energy budget rather than the vertical energy budget
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Global energy balance

The linearized climate equation:

AN = F — AAT

Flux imbalance = forcing - response



Global energy balance

The linearized climate equation:

AN = F — AAT

Flux imbalance = forcing - response

with the response approximated as proportional to the global average surface temperature.

Many other response terms are possible, this first-order term does rather well.



Equilibrium climate sensitivity

Relationship to equilibrium change:
AN = F — AAT
At equilibrium AN = 0 and one can solve

AT = F/ A

An important caveat is that A is a function of the response time A(t) and also the rate of
change of T.

A estimated over 10 years does not equal A when you give the Earth a century to respond,
for example due to changes in ocean circulation and associated clouds.
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Equilibrium climate sensitivity

Relationship to equilibrium change:
AN = F — AAT
At equilibrium AN = 0 and one can solve
AT = F/ A

An important caveat is that A is a function of the response time A(t) and also the rate of
change of T.

A estimated over 10 years does not equal A when you give the Earth a century to respond,
for example due to changes in ocean circulation and associated clouds.

Beware of confusing terminology about “transient climate sensitivity” .

AT yopsiont = F/ Mvansient - the temperature change using a transient sensitivity

ATy ansiont = (F-AN)/ Ayansions - the transient temperature change



Cumulative forcing (10°' J)
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55e21 J boils the Great Lakes
All the coal ever burned about 15e¢21 J direct



Cumulative forcing (1021 J)

Global energy balance
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Radiation — known forcing

60S-60N Radiation - Forcing (W m'2)
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CERES data in global budget

MURPHY ET AL.: EARTH ENERGY BALANCE

Lo b v v b v b v e v v b v v v v v by
Total

¢ ++ -
r" =0.64 ERBE T

r* =0.65 CERES .

Longwave
r* =0.86 ERBE
r* =0.91 CERES

+ CERES 2000-2005
0O ERBE 1985-1999

-102 —

Normalized Shortwave
r* =0.49 ERBE
r* =0.45 CERES

290 291 292 293
NCEP 60S-60N 1000 mbar temperature (K)

1988 1992 1996 2001 2002 2003 2004 2005

2000

Cumi |1 t gwmn ut trop. a
(incl olcani

JOHC to 700 m

1960 1970 1980 1990 2000 2010

In 2009 | tried to constrain the
outgoing radiation wedge with
CERES and ERBE data

AN = F — AAT
=~ (AN - F)/AT

It is very important to subtract
changes in forcing

| was always clear that this short-
term A is not A for equilibrium
temperature

| was perhaps too optimistic in
accuracy



Radiation — known forcing

60S-60N Radiation - Forcing (W m'z)

-348 —
-346 —
-344 —
-342 —
-340
338 oG-

-254 —

-250 —
-248
-246 —
-244
-242
2404 B0
-102

-100 —

CERES data in global budget: 2009

MURPHY ET AL.: EARTH ENERGY BALANCE
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Aside: this plot probably yields
a pretty good longwave offset
between CERES and ERBE

The shortwave offset is less
certain because we don’t know
the forcings and random cloud
changes as well as longwave



CERES data in global budget: update

* When plotted the same way with monthly
averages, slopes stay the same

CERES radiation - forcing
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CERES radiation - forcing

CERES data in global budget: update
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With 10 years more data we can now
use annual averages.

They should work better

But ... they yield various slopes
depending on the time period

| think | underestimated the
importance of internal variability
2016 ENSO?

If we knew them, internal changes
might be considered “forcing” and
Subtracted

Subtle questions about whether
anomalously warm years represent
internal variability or a hint of a
warmer world



CERES radiation - forcing

Annual or monthly anomalies
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« Longwave radiative feedback should be straightforward, models are at -2.2 W m2 K-
* Why is the slope from annual averages so large?

» Again, questions about internal variability or a hint of a warmer world

natural forcing feedback



Can we use time history to constrain climate feedback?

Cumulative forcing or energy
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Larger A requires smaller
aerosol forcing, and vice
versa.

There is no unique
solution purely from
energy balance.

Look for a A that is
simultaneously plausible
for the 1970s and the
2000s.



"~ “arred aerosol forcing (negative)

Can we use time history to constrain climate feedback?

0.0-L -~ | A new ocean heat content
paper .

lambda = 1.2 W m” K analysis is not far off my 2009

2.0 — dashed: no added OHC > 2000 m .
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* Main result of 2009 paper

« Dashed: next slide will show
that A is far more important

than uncertainties in OHC
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Inferred aerosol forcing (negative)

Can we use time history to constrain climate feedback?
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A > 2.4 requires recent
aerosol forcing near zero,
probably not physical

Central estimates

A < 0.6 implies a rapidly rising
aerosol forcing, probably
inconsistent with emissions.

Unfortunately 0.6 to 2.4 does
little to narrow range in A.



Can we measure those aerosol forcing trends?

. I e : ; 3% m BT k. MISR data with simple
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Accurate trends would require aerosol optical depth to <0.005 decade™’

All-sky shortwave with constant monthly local cloud climatology from MODIS, Optical depth, Angstrom
exponent, SSA from MISR. Constant asymmetry parameter.




Cumulative forcing (1021 J)

Some regional emission analysis

« (nothing to do with CERES)
* (lots to do with the energy budget)

« What parts of the world contribute to these wedges?
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Radiative forcing (W m™?)
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Some regional emission analysis

« (nothing to do with CERES)
* (lots to do with the energy budget)

« What parts of the world contribute to these wedges?
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Conclusions

The overall Earth energy budget to date does not imply a unique climate
sensitivity, depending on allotting energy to aerosol forcing or climate feedback.

Climate feedbacks (decadal) between about 0.8 to 3 W m2 K- are compatible
with CERES data, depending on how the data are chosen and averaged.

Climate feedbacks (decadal) between about 0.6 to 2.5 W m2 K-"are compatible
with energy balance, depending on recent trends in aerosol forcing.

Long-term feedback is probably smaller (higher climate sensitivity).

There are difficult questions in how to identify and treat internal climate
variability in both the CERES or energy budget data.



Feedback parameter (W m?C™)

One slide: Longwave feedbacks
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Aerosols: a global picture

Optical depth
Annual average

MISR 2001-2012

yydap |eando wu 29 abelany




Absolute long-term changes are daunting

Subjective: Say that £ 0.15 W m= is significant
What stability is required for the 15 years Terra has been in orbit?

Aerosol optical depth: 0.005 decade™’
Total energy: (e.g. CERES): < 0.04% decade’
Cloud cover: perhaps 0.1% decade-!

Single scattering albedo: perhaps 0.01 decade™’



Planck feedback

d/dT(e0T?) £ = mean emissivity

= 4¢0T3

= 4eoTHT
= 4(Eout)/T
Eout/T=0.75W m-2 K-1

Planck feedback = 3 W m-2 K-1



Absolute long-term changes are daunting

Example: many measurements depend on a cloud filter
* Relative changes in the MISR and MODIS cloud filters:

* 12% changes over the tropical oceans.
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(as of 2013 download; newer data versions may help this)



Aerosols: a global picture

Optical depth
Annual average
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All-sky shortwave with constant monthly local cloud climatology from MODIS, 40% of aerosol above cloud
Optical depth, Angstrom exponent, SSA from MISR. Constant asymmetry parameter.




